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A B S T R A C T   

The human brain is not only efficiently but also “redundantly” connected. The redundancy design could help the 
brain maintain resilience to disease attacks. This paper explores subnetwork-level redundancy dynamics and the 
potential of such metrics in disease studies. As such, we looked into specific functional subnetworks, including 
those associated with high-level functions. We investigated how the subnetwork redundancy dynamics change 
along with Alzheimer’s disease (AD) progression and with major depressive disorder (MDD), two major disorders 
that could share similar subnetwork alterations. We found an increased dynamic redundancy of the subcortical- 
cerebellum subnetwork and its connections to other high-order subnetworks in the mild cognitive impairment 
(MCI) and AD compared to the normal control (NC). With gained spatial specificity, we found such a redundancy 
index was sensitive to disease symptoms and could act as a protective mechanism to prevent the collapse of the 
brain network and functions. The dynamic redundancy of the medial frontal subnetwork and its connections to 
the frontoparietal subnetwork was also found decreased in MDD compared to NC. The spatial specificity of the 
redundancy dynamics changes may provide essential knowledge for a better understanding of shared neural 
substrates in AD and MDD.   

1. Introduction 

Resting-state fMRI (rs-fMRI)-derived functional connectivity (FC) 
reflects information exchanges and coordination among different brain 
regions, resulting in large-scale brain functional networks (Sporns, 
2013). It has been suggested that brain FC is time-varying and non- 
stationary, possibly reflecting adaptive control and attention fluctua-
tions during resting state (Chang & Glover, 2010). Such a dynamic 
connectome (a.k.a., “chronnectome”) could be altered by many brain 
diseases and mental disorders (Marusak, et al., 2017). Many studies have 
used graph theory as a powerful tool to investigate the brain network’s 
efficiency and how brain diseases alter it (Xuan, et al., 2017). Among 
many efficiency metrics, the characteristic path length (Liu, et al., 2017) 
(i.e., the shortest paths) and its derivatives (e.g., assortativity and 
resilience), including the small-worldness (Newman, 2006; Ravasz & 
Barabási, 2003; Achard, et al., 2006) have been extensively investigated. 

These metrics, including their dynamics, have performed well on 
analyzing sparse brain networks that often include a few strong con-
nections. On the contrary, in denser networks where weaker connections 
are also included, redundancy could become a dominant property. 

However, characterizing brain network’s redundancy and its 
changes over a short time (i.e., redundancy dynamics) is largely 
neglected in the previous brain research. For instance, one may calculate 
the number of independent paths in the brain network as a redundancy 
measurement to quantify the robustness of the network under possible 
attacks that could occur brain wide. While such a redundancy analysis 
on many natural networks has been extensively conducted (Corson, 
2010; Härkegård & Glad, 2005), brain network studies are still very 
scarce. A magnetoencephalography (MEG)-based FC study (Di Lanzo, 
et al., 2012) used various redundancy metrics at each frequency band 
and revealed that the functional brain network was more redundant 
than a random network. In the study, the average number of alternative 
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paths was used as the redundancy metric. In another electroencepha-
logram (EEG) study on spinal cord injured patients, a redundancy 
measurement of the entire FC network was used but showed no signif-
icant changes compared to healthy subjects (Fallani, et al., 2011). It was 
also found that education level could strengthen the redundancy of 
diffusion MRI-derived brain structural connectivity network of Alz-
heimer’s disease (AD) patients compared to normal controls (NC) (Yoo, 
et al., 2015). A major depressive disorder (MDD) study showed a 
reduction in the brain network’s redundancy in MDD patients compared 
to NC during stimulus processing (Leistritz, et al., 2013). 

The major drawback in the previous brain network redundancy 
studies is that none of them investigated redundancy in the dynamic 
brain functional network that may reflect the higher functional signifi-
cance of the brain network redundancy than the static one. Whether the 
FC dynamics also lead to dynamics in the network redundancy, and 
whether such alterations can be sufficiently sensitive to brain diseases so 
that it could be utilized for brain disease studies, remains unknown. As 
such, in our recent works, we proposed to measure the dynamic 
redundancy of the whole brain network (Ghanbari, et al., 2020; Ghan-
bari, et al., 2021). We defined a new brain state that every pair of brain 
regions were connected through at least two independent paths (with no 
node shared) as a redundant state, and calculated its dynamics as one of 
the major redundancy metrics. We found an increased chance of the 
whole-brain redundancy along time in the mild cognitive impairment 
subjects (MCI), an early stage of AD, compared to the NC (Ghanbari, 
et al., 2020, Ghanbari, et al., 2021). We further designed an individu-
alized early AD detection method based on a decision tree with the 
dynamic redundancy metrics as features, which reached an accuracy of 
90% in the classification between MCI and NC (Ghanbari, et al., 2020). 
While this method seems promising, it lacks spatial specification, as all 
the redundancy metrics were defined on the entire network without 
knowing which specific subnetwork has redundancy changes. Disease 
studies may be more interested in where such redundancy changes take 
place. Meanwhile, by focusing on more dynamic redundancy features, 
one could increase the sensitivity in group difference detection, whereas 
the whole-brain metric could have reduced sensitivity due to the 
average effect. It could be possible that different brain subnetworks, due 
to their specific cognitive roles (Smith, et al., 2009), may be affected 
differently and show different dynamic redundancy changes. Without 
the spatial resolution, whole-brain avaraged redundancy may not reveal 
such subnetwork-level changes. 

Cognitive dysfunction is prevalent in neurological and psychiatric 
disorders. Two typical disorders, AD and MDD, could develop cognitive 
dysfunction at certain stage of the diseases (Sierksma, et al., 2010) and 
may share broad similarities in brain structural changes such as hippo-
campal volume loss (Sampath, et al., 2017) as well as brain subnetwork 
disconnection, especially within and among a set of cognitive function- 
related subnetworks (Menon 2011). In this study, we performed 
subnetwork-level dynamic redundancy analysis on two disease cohorts 
(AD and MDD) and investigated the redundancy dynamics of each 
cognitive function-related brain functional subnetwork and the redun-
dancy dynamics of the inter-subnetwork connections. We hypothesized 
that the two disease cohorts (AD and MDD) may share similar cognitive 
dysfunction symptoms and thus could have similar overlapping under-
lying neural features as revealed by the subnetwork-level redundancy 
dynamics. 

2. Materials and methods 

2.1. Datasets 

In Study 1, we used the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) dataset. A participant with or without subjective memory com-
plaints, verified by a study partner, with Mini-Mental State Exam score 
between 24 and 30 inclusive, and also Clinical Dementia Rating equals 
0 and Memory Box score 0, belongs to NCs. While participants were 

diagnosed as MCIs if they expressed a subjective memory concern as 
reported by the participant or recalled by study partner or clinician with 
Mini-Mental State Exam (MMSE) score between 24 and 30 inclusive, and 
also Clinical Dementia Rating equals 0.5 and Memory Box score at least 
0.5. However, participants were diagnosed as AD if they expressed a 
subjective memory concern as reported by the participant or recalled by 
study partner or clinician and Mini-Mental State Exam score between 20 
and 24 inclusive with Clinical Dementia Rating equals 0.5 or 1.0 (http:// 
adni.loni.usc.edu/). The 7-min rs-fMRI data (140 volumes, repetition 
time = 3 s, slice thickness = 3.5 preferred, 4.5 mm maximum, flip angle 
= 80◦, matrix size = 64 × 64) was preprocessed using AFNI (Cox, 1996) 
according to a standard pipeline (Yan & Zang, 2010). Specifically, the 
first ten volumes are discarded, followed by a rigid-body head motion 
correction and a nonlinear spatial registration to the Montreal Neuro-
logical Institutes (MNI) space. The subjects with large head motion (i.e., 
larger than 2 mm or 2◦) and those who had more than 2.5 min rs-fMRI 
data with large (greater than0.5 mm) frame-wise displacement were 
excluded (Chen, et al., 2017). A total of 6 ADs, 3 MCIs and 17 NCs were 
excluded due to excessive head motion. Mean rs-fMRI time series of each 
brain region defined by Shen’s 268-region atlas (Shen, et al., 2013), was 
band-pass filtered (0.015–0.15 Hz), before it was further processed to 
reduce artifacts by regression analysis (nuisance regressors included 
head motion parameters according to the “Friston-24” model, the mean 
rs-fMRI signal in the white matter, and that in the cerebrospinal fluid). A 
total of 49 NC (26 males and 23 females, age 73.1 ± 6.5, MMSE 29.1 ±
1.0), 49 MCI (26 males and 23 females, age 74.3 ± 9.8, MMSE 27.9 ±
1.6), and 49 AD (26 males and 23 females, age 73.3 ± 8.5, MMSE 23.1 ±
2.5) subjects were selected from the ADNIGo and the ADNI2. Specif-
ically, we found that 49 AD subjects had baseline fMRI data, while the 
NC and MCI groups had more subjects than the AD group. Therefore, we 
selected the baseline data (or the follow-up data that was closest to the 
baseline data, if the baseline data had excessive head motion) NC and 
MCI subjects at the similar age (±2 years) and of the same gender as 
each of the AD subjects to make sure a good match of subjects among the 
three groups. Due to the limited sample size (N = 49) of ADs, we selected 
the same amount (N = 49) of NC and MCI subjects, respectively, to make 
sure as many matched data as possible were used. The three groups were 
age-matched (p = 0.752, one-way analysis of variance (ANOVA)) and 
gender-matched. 

In Study 2, we used a dataset collected from our collaborative hos-
pital, the First Affiliated Hospital of Guangzhou University of Chinese 
Medicine, Guangdong, China from September 2015 to June 2018. After 
an initial screening utilizing the 17-item Hamilton Rating Scale for 
Depression (HDRS-17) with a total score larger than 18 (Hamilton, 
1967), two expert psychologists (with at least ten years experience) 
separately diagnosed the MDD patients according to the Diagnostic and 
Statistical Manual (DSM-5, American Psychiatric Association, 2013). 
Only if both psychologists diagnosed a patient as MDD, then that subject 
was recruited. The inclusion criteria of MDD are as follows: (a) aged 
between 18 and 55 years old, (b) right-handed native Chinese speaker, 
(c) firstly diagnosed with MDD and had no history of any neurological 
illness or any other forms of psychiatric disorders, and (d) head motion 
smaller than 2 mm of translation or 2◦ of rotation in any direction during 
the rs-fMRI scan. Exclusion criteria included (a) a history of significant 
medical illness (15 participants were excluded), (b) alcohol abuse (a 
total score ≥ 8 in Alcohol Use Disorders Identification Test (Saunders, 
et al., 1993)), (0 participants were excluded), and (c) contraindications 
to MRI scan, (6 participants were excluded). The rs-fMRI and 3D T1- 
weighted images (3D-T1WI) in the MDD dataset had the following pa-
rameters: repetition time / echo time = 2,000/30 ms, flip angle = 90◦, 
matrix size = 64 × 64, field of view (FOV) = 240 mm × 240 mm, slices 
number = 33, slice thickness = 4.0 mm, scanning time = 8′20′’ (250 
volumes) for the rs-fMRI, and TR/TE = 10.4/4.3 ms, flip angle = 15◦, 
slice thickness = 1.0 mm, slice gap = 0 mm, matrix size = 256 × 256, 
FOV = 256 mm × 256 mm, and slices number = 156 for the 3D-T1WI. 
The image preprocessing was performed using SPM12 (www.fil.ion.ucl. 
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ac.uk/spm) and Data Processing Assistant for Resting-State fMRI 
(DPARSF) version 2.3 (http://rfmri.org/DPARSF). For each subject, the 
first ten volumes were removed. The remaining images were corrected 
for slice acquisition timing and head motion. The 3D-T1WI was used to 
guide rs-fMRI registration using the unified segment and Diffeomorphic 
Anatomical Registration through Exponentiated Lie Algebra (DARTEL) 
in SPM12. The rs-fMRI data were smoothed with a 6-mm full-width-at- 
half-maximum Gaussian kernel, and further denoised by regressing out 
several nuisance signals, including the Friston-24 head motion param-
eters and signals from cerebrospinal fluid and white matter, before 
linear detrending and temporal band-pass filtering (0.01–0.08 Hz).The 
same data was previously used in another study (Li, et al., 2020), which 
included 66 NC (35 males and 31 females, age 29.3 ± 10.1) and 66 MDD 
(41 males and 25 females, age 29.5 ± 9.9). The two groups were age (p 
= 0.931, two-sample t-test) and gender-matched (p = 0.379, chi-square 
test). The MDD group had a Hamilton Depression Rating Scale (HAMD, a 
measurement of disease severity) of 22.3 ± 3.6 and a disease duration of 
9.1 ± 1.9 months. This study was conducted in accordance with the 
Declaration of Helsinki. All participants provided written informed 
consent and the study was approved by the local ethics committee. 

2.2. Subnetwork definitions 

We adopted a widely used functional parcellation atlas (Shen, et al., 
2013). The 268 brain regions had been clustered using a group-wise 
spectral clustering algorithm, generating eight functional subnetworks. 
They were further identified and named as the medial frontal, fronto-
parietal, default mode, subcortical-cerebellum, motor, visual I, visual II, 
and visual association networks. In this study, we evaluated the dynamic 
redundancy of four subnetworks in the AD study, including the medial 
frontal, frontoparietal, default mode, and subcortical-cerebellum net-
works, since many studies have shown alterations in these four sub-
networks due to AD (Cui, et al., 2018; Xue et al., 2019). In the MDD 
study, since the previous studies indicated that the first three sub-
networks could be involved (Bludau, et al., 2016; Yan, et al., 2019); we 
only focused on the first three subnetworks. The four subnetworks were 
visualized in Fig. 1. 

2.3. Network redundancy 

Similar to our previous studies (Ghanbari, et al., 2020; Ghanbari, 
et al., 2021), we used a set of well-adopted connectedness metrics in the 
field of graph theory. Specifically, a network G with a node set V (G) and 
an edge set E(G) is connected if there is a path between every pair of its 
nodes. A connected network G is called 2-connected if, for every two 
nodes ×, y ∈ V (G), there are at least two “independent” paths between 
× and y that do not share any node(s) except x and y themselves. Fig. 2A 
depicts a connected graph but it is not 2-connected because of the ex-
istence of a shared node. Fig. 2B shows a 2-connected graph because 

there are at least two independent paths for every pair of nodes. 
Therefore, this is a redundant network that is resilient to any attacks (the 
graph is still connected after removing any node or link). Please note 
that such a redundancy definition is quite strict as it defines the 
redundancy of the entire network. While previous graph theory analysis 
also measured brain network’s resiliency by calculating the reduction of 
network efficiency after targeted removal of high centrality nodes or 
after random removal certain number of nodes (Joyce, et al., 2013); 
these methods were still efficiency-based and not as strict as our method. 

2.4. Dynamic network redundancy 

We calculated dynamic binary brain functional networks and quan-
tified dynamic network redundancy on each selected subnetwork and 
inter-subnetwork connections between each pair of the subnetworks. 
First, for each subnetwork (Fig. 3A) of each subject in each group (we 
did the same for the graph consisting of inter-subnetwork connections 
between each pair of the subnetworks), we generated T sliding windows 
to calculate the dynamic FC based on pairwise Pearson’s correlation 
(Fig. 3B). The window length was set to 60 s (20 volumes for the AD 
dataset and 30 volumes for the MDD dataset), and the step size was set to 
one volume (3 s for the AD dataset and 2 s for the MDD dataset). Second, 
for every window t, 1 ≤ t ≤ T, we applied D density levels to generate D 
binary networks (Fig. 3C). Third, we defined redundancy states (either 
state #1 or state #2) for every time window (Fig. 3D). Let r:={rt} (1 ≤ t 
≤ T) be the redundancy state vector where rt = 1 if the minimally 
connected network in t is not 2-connected and rt = 2, otherwise. Of note, 
the density level to have the minimal 2-connected network is higher 
than or equal to the density level that the network is minimally con-
nected. This is the reason that we defined redundancy states as whether 
the density level of the minimal 2-connected network is the same as the 
density level of the minimal connected network. In other words, we set 
the redundancy index for a network to “2′′ if the minimal 2-connected 
and the minimal connected networks have the same density level and 
we “1” if the minimal connected network is not 2-connected. For 
example, r = {1, 2, 2, … ,1} describes redundancy state changes in 
Fig. 3D. Finally, we quantified the dynamic redundancy by calculating 
the occurrence frequency of the state #2 during the entire scan time 
from r, generating a “redundancy index” for a subnetwork or a pair of 
subnetworks. This index measures the probability (between 0 and 1) 
that a network is also 2-connected when it is minimally connected (with 
the lowest density to ensure its connectedness) through time. Thus, the 
more the redundancy index is, the more frequent back-up paths exist for 
every pair of the network. In other words, the network with a higher 
redundancy index is more likely to have an optimized topology along 
time that makes it robust to any attacks. We obtained ten redundancy 
indices for each subject in the AD study, four for each subnetwork, and 
six for all pairs of the subnetworks. In the MDD study, six redundancy 
indices were obtained for every subject (since three subnetworks were 

Fig. 1. Visualization of the four functional subnetworks derived from the Shen 268 atlas. From left to right: the medial frontal (MF), frontoparietal (FP), default mode 
(DM), and subcortical-cerebellum (SUB) subnetworks. 
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included). Please note, since the redundancy index was determined by 
focusing on the minimal connected network at every time window, this 
study was irrelevant to a specific network density level. 

In this study, D = 19 (from 5% to 95% with a step size of 5%), T =
111 for AD study, and T = 151 for MDD study. All the analyses were 
implemented in MATLAB 2018b (the Mathworks, Inc.), SAGE 8.6 (based 
on Python 2.7), and SPSS v23 (IBM, Inc.). 

2.5. Statistical analysis 

Statistical analysis was carried out to compare the redundancy index 
among different groups (Fig. 3E). We used the Kruskal-Wallis test, a non- 
parametric version of ANOVA for group comparisons among NC, MCI, 
and AD groups on each subnetwork and each subnetwork pair (p < 0.05, 
false discovery rate (FDR) corrected). If a significant group difference 
was detected, then pairwise post-hoc analysis will be conducted with 
Mann-Whitney U-tests, a non-parametric version of two-sample t-test (p 
< 0.05 after Bonferroni correction). As a different analysis, we also 
conducted Spearman’s correlation analysis between each subject’s 
MMSE score and the redundancy index across all the subjects (NC, MCI, 
and AD) to characterize the possible association between redundancy 
and cognitive ability in the AD continuum. In the MDD study, we con-
ducted the Mann-Whitney U-tests to detect significant differences in the 
redundancy indices between NC and MDD groups (p < 0.05, FDR cor-
rected). We also conducted Spearman’s correlation analysis between the 

duration of MDD disease and the redundancy index across all the sub-
jects (NC and MDD) to find if there would be any associations between 
these two metrics. 

3. Results 

3.1. Group differences in subnetwork’s redundancy (the AD study) 

We found significant group differences in dynamic redundancy for 
the default mode and subcortical-cerebellum subnetworks among NC, 
MCI and AD groups (Table 1, Fig. 4). For subnetwork pairs, we also 
found group differences in four subnetwork pairs, mostly involving the 
connections with the subcortical-cerebellum subnetwork and those with 
the medial frontal subnetwork (Fig. 4C-F). Post-hoc analysis revealed 
that, in most cases, MCI subjects had elevated redundancy compared to 
NC, while such an elevation tends to be kept in AD subjects. The only 
exception was the default mode subnetwork, whose redundancy only 
decreased in the AD stage compared to NC. 

3.2. Association between subnetwork’s redundancy and cognitive 
performance (the AD study) 

We found significant correlations between the subnetwork’s redun-
dancy index and disease symptoms (MMSE score) across all 147 par-
ticipants in the AD continuum. They were summarized in Table 2 

Fig. 2. Examples of a connected network that is not 2-connected (A) and a 2-connected network (B).  

Fig. 3. Schematic framework dynamic redundancy 
analysis at the subnetwork level. The procedure in-
cludes (A) extracting FC subnetworks, (B) sliding 
window-based dynamic FC analysis, (C) constructing 
binary networks with different density levels in each 
sliding window, (D) calculating redundancy index 
based on a redundancy state vector, and (E) statisti-
cal analysis on the redundancy indices. (The figure in 
Fig. 3E is based on actual data, while the left one 
shows redundancy index differences in the MF sub-
network between NC and MDD, and the right one 
shows redundancy index differences in the SUB 
subnetwork among NC, MCI and AD. (*, **, ***, **** 
indicate corrected p-values (Bonferroni correction) at 
the intervals of (0.01,0.05], (0.001,0.01], 
(0.0001,0.001], and (0.00001,0.0001], respectively.)   
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(Spearman’s correlation, FDR corrected) and the fitted lines were 
depicted in Fig. 5. 

All the results indicate negative correlations between MMSE and the 
redundancy index. In other words, the redundancy was increased when 
the symptom was getting worse. By increasing the MMSE, the tendency 
of redundancy decreases in some of the subnetworks. More importantly, 
all the significant associations involved either the subcortical- 
cerebellum subnetwork or the connections with this subnetwork (espe-
cially, to the default mode, frontoparietal, and medial frontal 
subnetworks). 

3.3. Group differences in subnetwork’s redundancy (the MDD study) 

We found significantly decreased subnetwork redundancy (see 
Fig. 6A) of the medial frontal (p = 0.016) and that of the connections 
between the medial frontal and frontoparietal subnetworks (p = 0.013) 
in the MDD compared to NC after FDR corrections, while other sub-
networks and subnetwork pairs did not (Zhi, et al., 2018) show signifi-
cant changes. 

3.4. Correlation between disease duration and subnetwork’s redundancy 
(the MDD study) 

Of all the studied subnetworks, we found a significant negative 
correlation (r = − 0.249 and p = 0.044, uncorrected) between the 
default mode subnetwork’s redundancy index and the disease duration 
of the MDD subjects (Fig. 6B). As disease duration increased, the 
redundancy index decreased. 

4. Discussions 

Graph theory has become a powerful tool in investigating brain 
network topological changes in diseased populations, including AD 
(Farahani, et al., 2019) and also MDD (Zhi, et al., 2018). This paper 
investigated connectedness, a graph theory metric that measures 
reachability from any node to any other node in the network. If pairs of 
nodes are reachable through more than one independent path, then the 
increased reachability makes the network 2-connected, and making the 
network redundant. The redundancy of the functional brain network 

Table 1 
P values from the pairwise comparison with Mann-Withney U tests on the significant dynamic redundancy among NC, MCI and AD groups.   

MF FP DM SUB MF&F MF&DM MF& SUB FP&DM FP& SUB DM&SUB 

ANOVA 0.359 0.299 0.03 0.000 0.002 0.236 0.000 0.574 0.000 0.000 
NC vs. MCI   0.132 0.000 0.001  0.000  0.000 0.000 
AD vs. MCI   0.18 0.103 0.817  0.06  0.164 0.669 
NC vs. AD   0.011 0.000 0.005  0.000  0.000 0.000 

The p-values in bold denote significant results after FDR corrections (for three-group comparisons) or after Bonferroni correction (for post-hoc pairwise comparisons). 
MF: medial frontal subnetwork, FP: frontoparietal subnetwork, DM: default mode subnetwork, SUB: subcortical-cerebellum subnetwork. 

Fig. 4. Group differences in subnetwork’s dynamic redundancy among the NC, MCI and AD groups (*, **, ***, **** indicate corrected p-values (Bonferroni 
correction) at the intervals of (0.01,0.05], (0.001,0.01], (0.0001,0.001], and (0.00001,0.0001], respectively). Error bars show standard errors (SE). MF: medial 
frontal subnetwork, FP: frontoparietal subnetwork, DM: default mode subnetwork, SUB: subcortical-cerebellum subnetwork. 

Table 2 
Correlations between subnetwork’s redundancy index and MMSE across all subjects in the AD study.   

MF FP DM SUB MF&FP MF&DM MF&SUB FP&DM FP&SUB DM&SUB 

r 0.75 0.07 0.133 ¡0.236 0.116 − 0.177 ¡0.251 0.162 ¡0.249 ¡0.307 
p 0.369 0.397 0.109 0.004 0.162 0.032 0.002 0.05 0.002 0.0001 

Bold values denote significant correlation after FDR corrections (p < 0.05). The r values indicate Spearman’s correlation coefficients. MF: medial frontal subnetwork, 
FP: frontoparietal subnetwork, DM: default mode subnetwork, SUB: subcortical-cerebellum subnetwork. 

Fig. 5. Scatter plots and the fitted line between MMSE and redundancy indices in AD progression. FP: frontoparietal subnetwork, DM: default mode subnetwork, 
SUB: subcortical-cerebellum subnetwork. 
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could increase the robustness of the network from attacks to any place in 
the network. Different disease statuses could alter the redundancy of 
brain networks, making such an index a suitable measurement of disease 
perturbation to the brain network. Under such a hypothesis, we have 
introduced this type of graph theory metrics into brain network research 
(Ghanbari, et al., 2020, Ghanbari, et al., 2021) and in this paper, tested 
its feasibility in characterizing different brain subnetworks for different 
brain diseases. This metric has distinctive features compared to the 
previous brain network studies. Previous studies may use connectedness 
as a prerequisite to quantify other network attributes (Rubinov & 
Sporns, 2010). They did not directly study connectedness and redun-
dancy and its dynamics in diseased conditions. Importantly, we focused 
on characterizing truly redundant paths (those sharing no nodes) and 
redundancy for all node pairs in the network. The result showed the 
effectiveness and sensitivity of our method in disease studies. 

Despite the novelty of the method, in this paper, we mainly focused 
on detecting which brain subnetwork(s) had altered dynamic redun-
dancy due to two different diseases (AD and MDD), because it had been 
shown that complex psychiatric and neurological disorders were char-
acterized by structural and functional abnormalities in a few brain 
subnetworks (Menon, 2011). With this considered, in the current study, 
we did not investigate the global redundancy of the entire network but 
the redundancy of the specific brain subnetworks. 

We first applied the method to characterize group differences among 
groups at different AD progression stages. The gradual reduction in the 
redundancy of the default mode network found along the AD continuum 
(Fig. 4A) was consistent with the previous findings with other methods 
(Xue et al., 2019), (Grieder, et al., 2018). This finding indicates that the 
AD pathology may target the default mode network. However, we did 
not find significant reductions in the MCI stage, possibly due to a good 
resilience of the default mode network, which makes its robustness last 
rather long and finally collapse in the AD stage. This is also different 
from our previous study characterizing the redundancy of the entire 
brain network, where the MCI shows elevated redundancy compared to 
NC and AD. One possible explanation for such a difference is that the 
default mode subnetwork is losing its redundancy, but other sub-
networks are gaining redundancy to compensate for it. This could make 
the entire network of MCI have increased redundancy. This study, 
however, further revealed the subnetwork-level changes under the AD 
pathological attacks. 

The generally increased subnetwork redundancy in MCI, as one of 
the major findings in the current study, is consistent with our previous 
finding of the elevated whole-brain network redundancy in MCI, argu-
ably caused by the compensatory effect to the AD pathological attack in 
the early stage. We note that the most involved subnetwork was the 
subcortical-cerebellum subnetwork. The redundancy of this subnetwork 
(Fig. 4B) and that of the inter-subnetwork connections with this 

subnetwork (Fig. 4D-F) were increased in MCI compared to NC. The 
function of this subnetwork is complex, including memory. Many AD 
pathology-related regions, such as the hippocampus, are included in this 
subnetwork. Due to its fundamental role in AD pathology, the connec-
tions within this subnetwork could be less efficient; to maintain cogni-
tive ability in the presence of AD-related neurodegeneration, the 
elevated redundancy in this subnetwork could be the key in the MCI 
stage. Besides, we found that all three major “high-order” subnetworks 
(medial frontal, frontoparietal and default mode subnetworks) tended to 
have more redundant connections to the subcortical-cerebellum regions 
(Fig. 4D-F). This may further support the “compensatory hypothesis”, as 
the additional paths to these three high-order subnetworks could pre-
vent a significant drop in the cognitive performance. In addition, we 
found that such elevations were still maintained in the AD stage, 
whereas it was not the case in our previous whole-brain analysis. This 
could be due to the smaller scale of the brain network we were currently 
focused on. Of note, the elevated redundancy was also observed between 
the medial frontal and the frontoparietal subnetworks, showing the 
backup paths could also help to maintain the interactions between the 
high-order subnetworks for high-level cognitive functions in MCI. 

Another main finding of the redundancy changes in the AD study lies 
in the association between disease symptom (general cognitive ability, 
as measured by MMSE) and the redundancy index in the AD continuum, 
related to the correlation of the redundancy index and MMSE of the 
subjects in the AD progression study. By Fig. 5, this negative correlation 
was consistent with our group comparison results, indicating increased 
redundancy when the symptom was getting worsened. This result in-
dicates that our proposed subnetwork redundancy index could be sen-
sitive to an early sign of AD, which is better than the whole-brain 
redundancy. Such a protective mechanism through enhanced redun-
dancy could be used to prevent or delay AD progression in future studies. 

We also demonstrated the effectiveness of our method in the MDD 
study and found that the redundancy loss in the medial frontal subnet-
work, as well as the connections between the medial frontal and fron-
toparietal subnetworks, could be associated with MDD. Previously, in 
MDD studies, disrupted brain network’s efficiency properties have been 
demonstrated (Zhang, et al., 2011). The most targeted subnetworks in 
the MDD studies include three high-order networks, i.e., the medial 
frontal, frontoparietal, and default mode network, as well as their in-
teractions (Kaiser, et al., 2015). Our redundancy index also indicated 
disrupted medial frontal subnetwork, as well as the medial frontal- 
frontoparietal interactions (Fig. 6A). Specifically, MDD’s subnetwork 
seemed to have less tendency to be redundant in these subnetworks. The 
MDD’s pathology or neuromechanics have mainly been related to 
aberrant neurotransmitters in the subcortical (e.g., the striatum) regions 
(Kumar, et al., 2014), but the disrupted cortical (especially the pre-
frontal cortex (Zuo, et al., 2018)) to subcortical connections have been 

Fig. 6. (A) Comparisons of the subnetwork’s redundancy indices between NC and MDD (* indicates p < 0.05, FDR corrected). Error bars show standard errors (SE). 
MF: medial frontal subnetwork, FP: frontoparietal subnetwork. (B) Results of correlation analysis in MDD. 
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often reported, which involved the medial frontal subnetwork. The 
functions of this subnetwork also include emotion processes and social 
behaviors (Waugh, et al., 2014), while the functions of the frontoparietal 
network mainly include executive control (Veldsman, et al., 2020). The 
loss of the medial frontal network’s redundancy, as well as the con-
nectivity redundancy between this subnetwork and the frontoparietal 
network could be the cause of uncontrolled depressive thoughts and 
negative affections (Ross & Rush, 1981). Besides, from the default mode 
network where the redundancy level was not significantly affected, we 
found that increased disease duration could reduce this network’s 
redundancy. Taken together, this new redundancy index could also help 
better understand mental disorders. 

We think that the number of redundant connections would decrease 
after the emerging of major depressive disorder due to the disturbance of 
the disease. This happened to two subnetworks, MF and MF&FP 
(Fig. 6A), both are believed to be related to the symptom of depression 
(Kaiser, et al., 2015). On the contrary, the course of AD could be rather 
long, with many years developing until MCI and many more years to 
dementia (Petersen, et al., 2018). With AD pathological changes in the 
brain, the symptoms could still be invisible or relatively mild. It is hy-
pothesized that the brains of MCI patients may have adequate time to 
react to the AD pathological attacks by developing compensatory al-
terations such as increased FC (Skouras, et al., 2019), which may result 
in elevated connectivity redundancy, possibly by enhancement of weak 
FC links or redistribution of FC links, to be able to maintain overall 
connectedness even with the attacks of AD. The decrease of the redun-
dant connections from MCI to AD (Fig. 4) further favors such a hy-
pothesis. That is, with AD progression, the compensation could not make 
the entire brain network sufficiently work properly, possibly to due the 
attack to the redundant connections, which eventually causes collapse 
and dementia. 

Our study has several limitations. First, since our method is based on 
the frequency of redundancy through the time, this technique can only 
be applied to dynamic FC in the networks, not the static ones; future 
works could be carried out based on static FC network or even the 
structural networks. Second, mediation analysis is considered a very 
promising method in the study of abnormal aging by treating brain 
network-derived redundancy (robustness) as a certain protective 
mechanism that could lead to individual differences in the disease 
progression, which deserves more studies in the future. Third, we 
applied our methods just to two kinds of diseases, which should be 
extended to other disorders in the future. Fourth, our redundancy metric 
is based on the 2-connected graph; a new metric can be defined based on 
other redundancy measurements, such as 3-connectedness. Fifth, our 
method is based on binary graphs; how to measure redundancy of a 
weighted graph needs further study. Finally, instead of conducting 
group-level statistical analysis, it would be attractive to apply machine 
learning algorithms on various redundancy features in the future. 

5. Conclusions 

In this study, we carried out a subnetwork-level redundancy analysis 
that characterized dynamic redundancy within and between specific 
subnetworks using resting-state fMRI from two disease cohorts (AD and 
MDD). We revealed the effectiveness and sensitivity of our subnetwork 
redundancy index in the brain disease studies. Redundancy, as one of the 
key metrics in the field of graph theoretic analysis, could be a promising 
method in the brain network studies. 
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